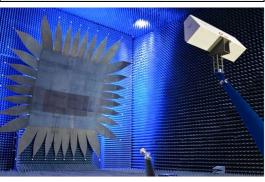


SENSORS DIRECTORATE OVERVIEW

DR. MIKE EISMANN, CHIEF SCIENTIST AFRL/RY, MAY 2024



Sensors Directorate Technology Areas

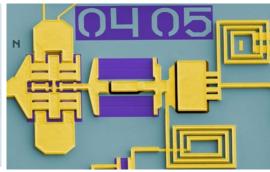
Electro-Optical and Infrared Sensing

Radio Frequency Sensing

Electromagnetic Spectrum Warfare

Positioning, Navigation, and Timing

Sensing Autonomy

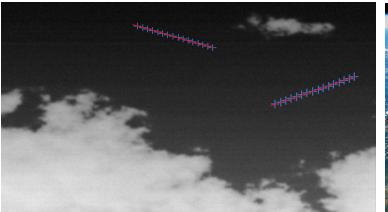

Multi-Domain Sense Making

Photonics

Microelectronics

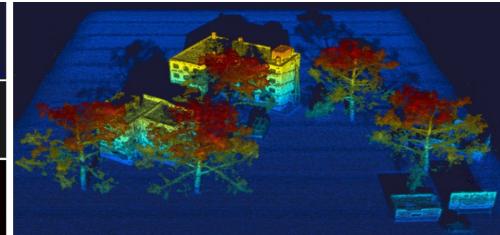
EO/IR Sensing

Mission: Develop disruptive EO/IR technology to enable surveillance and targeting of multi-domain threats in contested environments


Scope: EO/IR technology for "sensing" and sensorspecific "sense making" functions to deliver real-time "data products"

Current Research Focus

- Extended range infrared search and track
- Multi-mode ladar technology; 3-D, SAL, vibrometry
- Space-based sensing concepts
- Event-based sensing
- Hyperspectral imaging

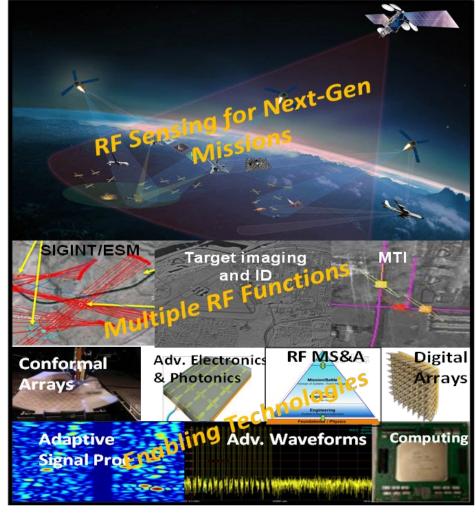

Technology Area Lead

Dr. Joseph Meola; joseph.meola.1@us.af.mil

- High-performance, low-cost ladar component technology
- Midwave infrared hyperspectral imaging technology

RF Sensing

Mission: Develop and enhance AF capabilities for all weather intelligence, surveillance, reconnaissance, and targeting in permissive, contested, and highly contested environments


Scope: Pursue novel RF system concepts to persistently sense across RF spectrum. Detect, ID, track and maintain custody of high value targets.

Current Research Focus

- RF modeling, simulation and analysis
- Low-cost RF sensors
- Advanced multifunction digital arrays
- Distributed moving target indication
- RF targeting, imaging and identification

Technology Area Lead

Dr. Stephen Hary; stephen.hary@us.af.mil

- Distributed RF sensing tailored for future missions
- Mode development for digital beamforming radar

Electromagnetic Spectrum Warfare

Mission: Research, develop, and transition technologies that enable mission assurance in contested and denied environments against threats that exploit the electromagnetic spectrum (EMS)

Current Research Focus

- Systems engineering of capabilities to ensure dominance in contested EM environments
- Advanced sensing strategies to characterize adversary signals in a dense spectral environment
- Timely Electro-Optical (EO) countermeasure development to protect the warfighter
- Command and Control (C2) of assets to defeat advanced threats

Technology Area Lead

Mr. Ryan Sites; ryan.sites@us.af.mil

- New algorithms to parse and make sense of a dense EMS environment
- EW battle management: Data driven analytics to determine operational & tactical EW decisions
- High-Value Aerial Asset (HVAA) Protect: Dominance of RF and EO domains for survivable EMS operations

Positioning Navigation and Timing (PNT)

Mission: Enable the DAF (USAF & USSF) ISR and warfighting systems in contested environments through research, development, and transition of robust and resilient positioning, navigation, and timing (PNT) technology and capabilities

Scope: PNT technologies for airborne platforms enabling precision warfare and distributed ISR

Current Research Focus

- Robust & resilient multi-global navigation satellite system
- Resilient alternatives to GPS through Alt-PNT tech including Magnetic Nav
- Modular/Open PNT systems allowing for timely and affordable technology integration to pace threats

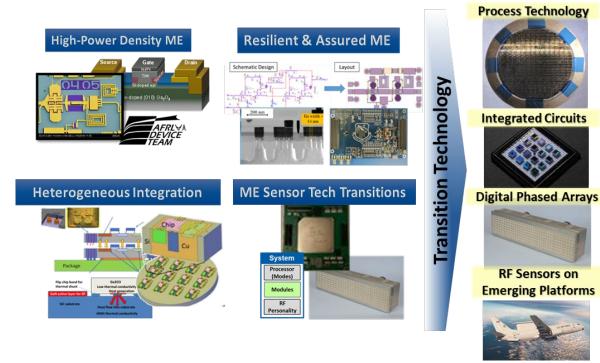
Technology Area Lead

Dr. John D. Elgin; john.elgin@us.af.mil

- Triage threat-driven gaps in PNT capabilities through the development and integration of GNSS and Alt-PNT tech
- Development of high TRL PNT tech transitioning to PNT PoRs
- R&D on alt-PNT, GNSS, and pLEO technologies to enable precision warfare and ISR in threat environments

Microelectronics

Mission: Transition RY microelectronics (ME) R&D to DAF RF sensor sub-systems that demand disruptive advances in size, weight and performance to win


Scope: In-house device R&D, chip-agnostic integration, & securing ME within a digital engineering environment. Leverage national programs to accelerate transition of advanced ME prototypes for DAF warfighting domains

Current Research Focus

- ME devices with high-power density: GaN, Ga₂O₃
- · Advanced integration and packaging of ME
- Securing and accelerating how we transition DAF ME from design phase to operational use
- Prototyping advanced ME in DAF sensor subsystems to seed transition paths

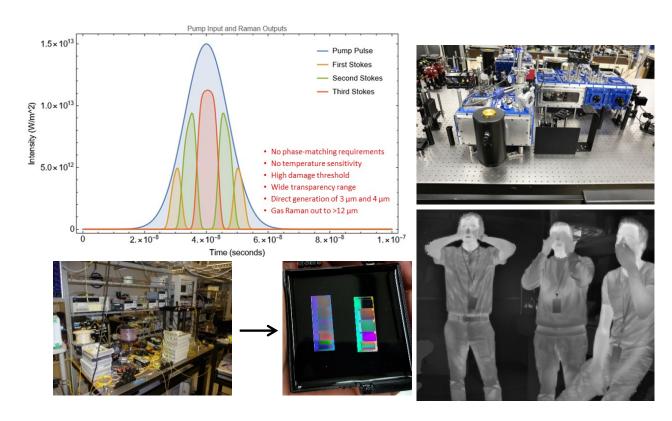
Technology Area Lead

Dr. Kelson Chabak; kelson.chabak.1@us.af.mil

- Ultra-wide bandgap semiconductor device research
- Heterogeneous microelectronics/photonics integration
- Ultra-wideband RF microelectronics for autonomous collaborative platforms
- Microelectronics root of security

Photonics

Mission: Provide next-generation foundational research to identify, protect against, track and remove threats to the USAF


Scope: In-house research is focused on laser sources, FPAs and detectors, photonic integrated circuits, and photonic and quantum substructures

Current Research Focus

- Integration and Low CSWAP
- Photonics for Situational Awareness
- Photonic integration and packaging
- Enabling EMS Warfare
- LWIR FPA with enhanced quantum efficiency

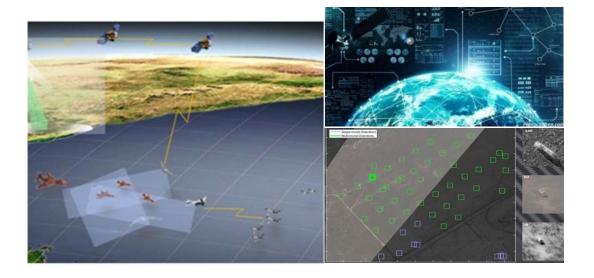
Technology Area Lead

Dr. Emily Heckman; emily.heckman.1@us.af.mil

- Wideband 100 GHz microwave photonic sampler
- LIDAR sources and APD detectors at 2 μm
- Joule-class MIR/LWIR laser sources

Multi-Domain Sensemaking

Mission: Develop and transition militarily relevant AI/ML technology that fuses information from any source, reasons over the environment, and enables improved, timely, and executable battlespace decisions


Scope: Sensemaking from multiple sensors (or single sensor, as needed), modalities, and domains applied atthe-edge, at forward operating units, and/or in reachback cells

Current Research Focus

- Al/ML- and physics-based automatic target recognition (ATR) and fusion
- Behavioral models, target intent, & predictive analytics
- Detect and track at-the-edge
- Cognitive and distributed sensing

Technology Area Lead

Dr. Lori Mahoney; lori.mahoney.3@us.af.mil

- Maintain custody of targets by fusing ATR output with additional contextual information
- Multi-modal identification and geolocation to provide targeting quality information to the warfighter at range
- Autonomous, adaptive sensing control/feedback target ID capability by integrating fused identification and tracking

Mission: Empower sensing systems to prioritize, orchestrate, and actively direct the sensing apparatus for the satisfaction of mission directed goals

Scope: Novel sensing system architectures, trusted data acquisition, artificial intelligence, machine learning, enhanced computer processing, distributed network collaboration, and closed-loop exploitation algorithms

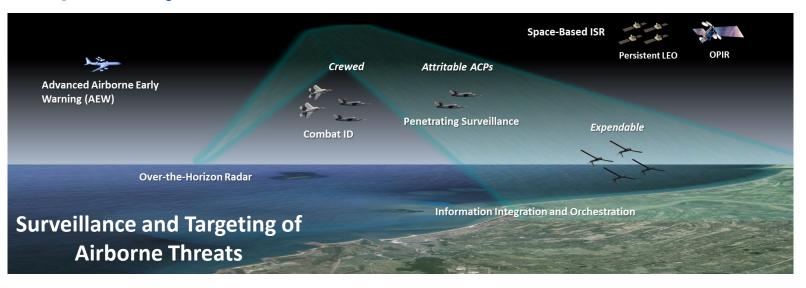
Current Research Focus

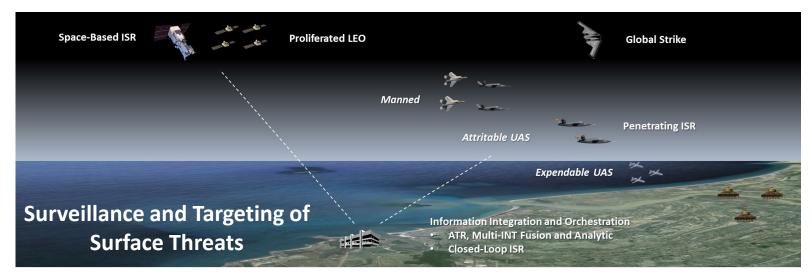
- Edge computing world models and prediction techniques
- Machine low-compute learning such as analogical learning, semantic pointers, and graph analytics
- Large Language models for text to model extraction
- Sensor payload mission planning and control
- Generative AI for courses of action development

Technology Area Lead

Mr. Todd Rovito; todd.rovito@us.af.mil

- Onboard tactical air sensor orchestration: offering higher fidelity tactical airborne sensor tasking and control from a web of large and small UAVs operating in a decentralized manner
- Generate adversary activity models automatically: using Al methods to discover and encode I&W predictors for generative predictive activity models




Cross-Disciplinary Capability Areas

SECAF Operational Imperatives

- Space Order of Battle
- Operationally Focused ABMS
- Moving Target Engagement
- Tactical Air Dominance
- Resilient Basing
- Global Strike
- Readiness to Deploy and Fight

Sensing for Multi-Domain Effects PNT EMS Warrare RF & EO/IR Sensors Sense-Making & Autonomy Enabling Components

Sensors Directorate Leadership

CHIEF SCIENTIST Dr. Mike Eismann, ST

RF Sensing Technology Bill Baldygo, ST

Positioning, Navigation, and Timing Dr. Jeff Hebert, ST

EMS Warfare Technology Mary Potts, ST

ATR and Sensor Fusion Dr. Steven Rogers, ST

Chief Engineer Phil Maciejewski

Senior Strategist Tim Poth

Contracting (RYKS) Dave Searle

DIRECTOR (Detailed) Ms. Amanda Gentry

Multi-Domain Sensing Autonomy (RYA) Jason Williams

Aerospace Components & Subsystems (RYD) Dr. Fred Arnold

Multispectral Sensing & Detection (RYM) Barry Karch

Organizational Health & **Development Officer** Dr. Erin Lunday

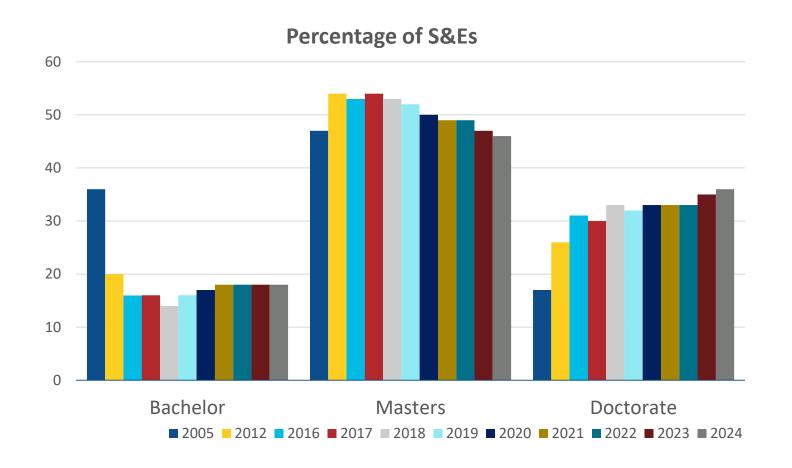
Integration & Operations (RYO) Ben Lammers

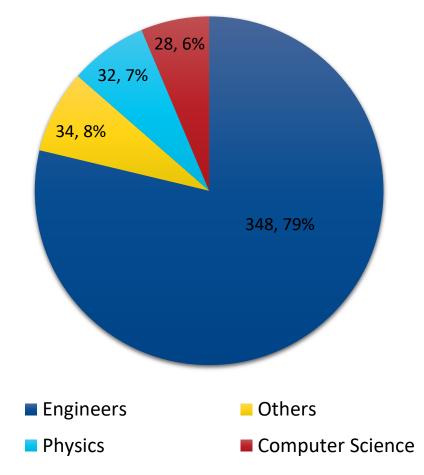
Spectrum Warfare (RYW) Dr. Mike Pochet

Capability Integration & Transition Support (RYZ) Col Ryan Givens

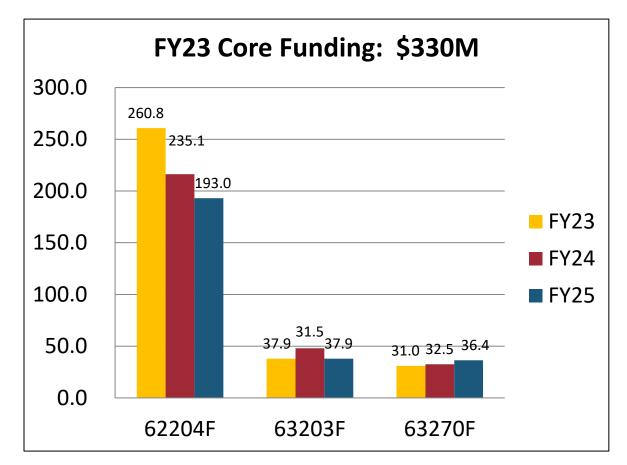
Human Resources (RYH) Pam Rodriguez-Roberson

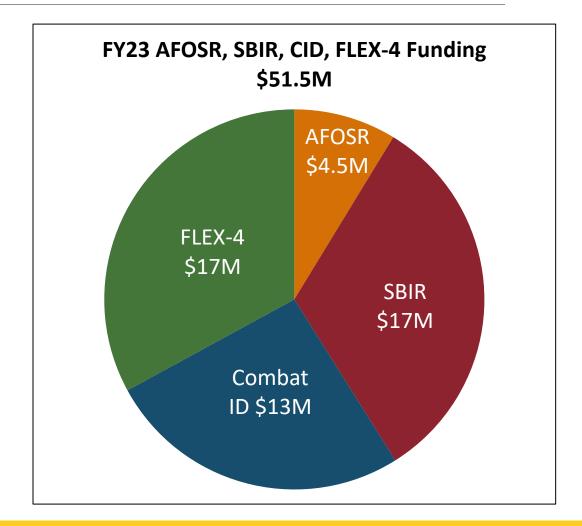
Security (RYS) Matt Cameron




Sensors Financial Management (RYF) Rob Schemmel

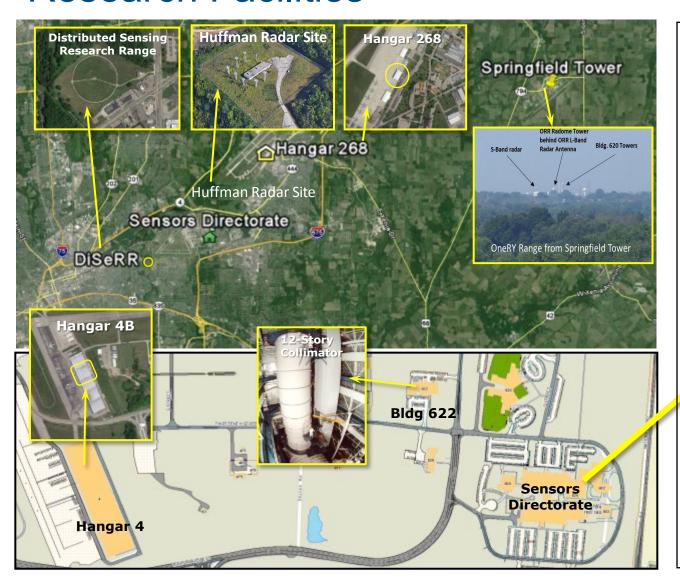
Sensors Directorate S&E Personnel


Note: Does not include Students Data as of 31 Jan 2024 Based on 442 S&Es assigned (410 civ & 32 mil)



RY Funds Execution

FY23 amounts includes \$73.7M in Congressional Adds


FY23 funding from other collaborators: \$463M

Total FY23 funding executed: \$845M

Research Facilities

Optics Labs

Digital Array Testbed

Outdoor Range

IDAL

Device Research Lab

RF EW Lab

ARC Lab

LID Range

EO Electronic Warfare

Small UAV Lab

ARC = Advanced Recognition
Capabilities
EW = electronic warfare
IDAL = Integrated Demonstration
& Application Laboratory
LID = Laser IR Development
RF = radio frequency

Questions?